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Onset of flow instability in a heated capillary tube
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Abstract

We study the stability of flow in a heated capillary tube with an evaporating meniscus. The behavior of
the vapor/liquid system, which undergoes small perturbations, is analyzed by linear approximation, in the
frame of a one-dimensional model of capillary flow, with a distinct interface. The effect of the physical
properties of both phases, the wall heat flux and the capillary sizes, on the flow stability is studied. The
velocity, pressure and temperature oscillations in a capillary tube with a constant wall heat flux or a con-
stant wall temperature are determined. A scenario of a possible process at small and moderate Peclet num-
bers corresponding to the flow in capillaries is considered. The boundaries of stability, subdividing the
domains of stable and unstable flows, are outlined, and the values of geometrical and operating parameters
corresponding to the transition from stable to unstable flow are estimated. It is shown that the stable cap-
illary flow occurs at relatively small wall heat fluxes, whereas at high ones, the flow is unstable, with con-
tinuously growing velocity, pressure and temperature oscillations.
� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

We study the stability of capillary flow when a liquid is heated and evaporated at a meniscus.
This problem is important in the context of cooling systems of electronic devices. A growing num-
ber of designs in MEMS with high power density require an insight into the mechanism of com-
plex processes in heated micro-channels. The latter includes a number of problems related to
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hydrodynamics of laminar flow developed under conditions of inertia, friction, gravity and cap-
illary forces interaction, heat transfer, as well as phase change. This stimulated numerous exper-
imental and theoretical investigations in the field of micro-channel flows. The studies in the last
decade concern a wide class of problems connected with single phase flows (Tuckerman and
Pease, 1981; Tuckerman, 1984; Wiesberg et al., 1992; Wang and Peng, 1994; Wu and Little,
1984; Bailey et al., 1995; Peng et al., 1994; Peng and Peterson, 1995; Adams et al., 1998; Incropera,
1999), boiling nucleation and bubble growth in narrow pipes (Peng et al., 1998; Yuan et al., 1999;
Ory et al., 2000; Peng et al., 2001), pressure drop and heat transfer in two-phase flows (Morijama
and Inoue, 1992; Peng and Wang, 1993; Bowers and Mudawar, 1994; Sobhan and Garinella,
2001). At the same time, there is a paucity of theoretical studies dealing with a capillary flow with
phase change at an evaporating meniscus. In spite of the fact that such flows are interesting in
connection with their possible implementation in cooling systems of electronic devices.
The stationary regimes of capillary flows with a distinct meniscus separating the regions of liquid

and vapor flows have been considered by Khrustalev and Faghri (1995) and Peles et al. (1998, 2000,
2001). Recently Yarin et al. (2002) investigated in detail the features of a two-phase laminar flow in
a heated micro-channel and revealed the effect of inertia, pressure, gravity and friction forces on
major flow characteristics. It was shown that, in the general case, the system of equations that de-
scribes the capillary flow has three solutions corresponding to stationary regimes of flow. The anal-
ysis of stationary states performed in the quasi-stationary approximation (an approach similar to
Semenov�s diagram method) showed that two of these states (‘‘upper’’ and ‘‘lower’’ corresponding
to high and low velocities, respectively) are stable, whereas the intermediate one is unstable. The
stationary or quasi-stationary approximations should be considered as limiting for the solutions
of the unsteady problems for infinite time intervals. However, approaches ignoring the dynamics
of the transient processes leading to steady states, should be supplemented by stability considera-
tion. Indeed, only stable steady states can become attractors of the transient processes. This makes
stability studies of the limiting steady states extremely important.
The main goal of the present work is to study the stability of a flow in a heated capillary, with

liquid evaporating at a meniscus. The study consists of the problem formulation, analysis of the
influence of the physical properties of the liquid and its vapor, and wall heat flux, on velocity,
pressure and temperature oscillations in capillary flows, as well as the stability of the flow at small
and large Peclet numbers. Section 2 deals with the pattern of capillary flow in a heated micro-
channel with a phase change at the meniscus. The perturbed equations and conditions on the
interface are presented in Section 3. Section 4 contains the results of the investigation on the sta-
bility of capillary flow at a very small Peclet number. The effect of capillary pressure and heat flux
oscillations on the stability of the flow is considered in Section 5. Section 6 deals with the study of
capillary flow at a moderate Peclet number. The perturbed equations and conditions on the inter-
face are derived in Appendix A. Approximate energy equations, corresponding to flow with very
small and moderate Peclet numbers, are presented in Appendices B and C.
2. Capillary flow pattern

Here we deal with the stability of flow in a heated capillary tube when a liquid is evaporating at
the meniscus. The capillary, as shown in Fig. 1, is a straight vertical pipe with diameter d and



Fig. 1. Schematics of a heated micro-channel (arrows show flow and heat flux directions).
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length ‘. The wall heat flux is uniform: qw = const. The thermal conditions on the capillary inlet
and outlet are:

(i) T L:in ¼ const:, the average liquid temperature T L at x = 0.
(ii) dTG

dx

� �
x¼‘

¼ 0, the average vapor temperature gradient at x = ‘.

Here and hereinafter subscripts G and L denote vapor and liquid, respectively, �in� and 0 the inlet
and outlet of the capillary tube, respectively.
These conditions correspond to, certain design of the cooling system, namely, a micro-channel

with a cooling inlet and adiabatic outlet (Yarin et al., 2002).
The wall heat flux is the cause for the liquid evaporation, and perturbation of equilibrium be-

tween the gravity and capillary forces. It leads to the offset of both phases (heated liquid and its
vapor) and interface displacement towards the inlet. In this case the stationary state of the system
corresponds to an equilibrium between gravity, viscous (liquid and vapor), and capillary forces.
Under these conditions the stationary height of the liquid level is less than that in an adiabatic
case
xf < xf:ad ¼
2r
rqLg

cos h ð1Þ
where xf and xf.ad are the height of the liquid level in a heated and adiabatic capillary tube,
respectively, r is the surface tension coefficient, r is the radius, qL is the liquid density, g is the



1424 G. Hetsroni et al. / International Journal of Multiphase Flow 30 (2004) 1421–1449
acceleration due to gravity, and h is the static contact angle as measured from the liquid side of the
contact line.
Unlike at adiabatic conditions, the height of the liquid level in a heated capillary tube depends

not only on r, r, qL and h, but also on the viscosities and thermal conductivities of the two phases,
the wall heat flux and the heat loss at the inlet. The latter affects the rate of liquid evaporation and
hydraulic resistance of the capillary tube. The process becomes much more complicated when the
flow undergoes small perturbations triggering an unsteady flow of both phases. The rising veloc-
ity, pressure and temperature fluctuations are the cause for oscillations of the position of the
meniscus, its shape and, accordingly, the fluctuations of the capillary pressure. Under a constant
wall temperature, the velocity and temperature fluctuations promote oscillations of the wall heat
flux.
3. Perturbed equations

In this section, we present the system of quasi-one-dimensional equations, describing the unstea-
dy flow in the heated capillary tube. They are valid for flows with a weakly curved meniscus when
the ratio of its depth to curvature radius is small enough. The detailed description of a quasi-
one-dimensional model of capillary flow with distinct meniscus, as well as the estimation condi-
tions of its application for calculation thermohydrodynamic characteristics of two-phase flow in
a heated capillary, are presented in the works by Peles et al. (2000, 2001) and Yarin et al.
(2002). In this model the set of equations including the mass, momentum and energy balances is:
oqi
ot

þ oqiui
ox

¼ 0 ð2Þ
qi
oui
ot

þ qiui
oui
ox

¼ � oP i
ox

� qig �
oF i
ox

ð3Þ
qi
ohi
ot

þ qiui
ohi
ox

¼ o

ox
ki
oT i
ox

� �
þ q ð4Þ
where q, u, P, h and T are the density, velocity, pressure, enthalpy and temperature, respectively, q
is the specific rate of volumetric heat absorption, F is the specific friction force, and the subscripts
i = G,L correspond to vapor and liquid, respectively.
The conditions on the interface express the continuity of the mass and heat fluxes and the equi-

librium of all acting forces (Landau and Lifshitz, 1959). In the frame of reference associated with
the interface they are
qG eV G ¼ qL eV L ð5Þ
PG þ qG eV 2G ¼ PL þ qL eV 2L þ fr ð6Þ
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qG eV GhG � kG
ox

¼ qL eV LhL � kL
ox

ð7Þ
where V f ¼ dxf
dt is the velocity of the interface,

eV i ¼ ui � V f is the velocity relative to the interface,
fr ¼ 2r

R is the capillary pressure, R ¼ r
cos h is the radius of the interfacial curvature, and k is the ther-

mal conductivity.
In the disturbed case, the governing parameters are the sum of their basic values plus small

perturbations
J ¼ J þ J 0 ð8Þ

where J is the basic value of the parameter corresponding to the stationary flow, J 0 is the small
perturbation of the parameters, j J 0

J
j� 1, J = q, u, P, T, h, xf, fr and q.

In capillary flow with a distinct meniscus separating the regions of pure liquid and pure vapor
flows, it is possible to neglect the change in the densities of the phases and assume that qL and qG
are constant.
In this case, the linearized equations for small perturbations of the velocity, pressure, temper-

ature, enthalpy, capillary pressure, wall heat flux, as well as the interfacial position that are ob-
tained from Eqs. (2)–(4) and conditions (5)–(7) are (see Appendix A)
ou0i
ox

¼ 0 ð9Þ
ou0i
ot

¼ � 1
qi

oP 0
i

ox
þ oF 0

i

ox

� �
ð10Þ
oT 0
i

ot
þ u0i

oT i
ox

þ �ui
oT 0

i

ox
¼ o

ox
ai
oT 0

i

ox

� �
þ ~q0i ð11Þ
and
ð�qGu0G � �qLu
0
LÞx¼xf ¼ ð�qG � �qLÞ

dx0f
dt

ð12Þ
ðP 0
G � P 0

LÞx¼xf ¼ 2�qL�uLðu
0
L � u0GÞx¼xf þ f

0
r ð13Þ
�qL�uLðh0G � h0LÞx¼xf þ ð�qG�hGu0G � �qL�hLu
0
LÞx¼xf � ð�qG�hG � �qL�hLÞx¼xf

dx0f
dt

¼ kG
oT 0

G

ox

����
x¼xf

� kL
oT 0

L

ox

����
x¼xf

ð14Þ
where a is the thermal diffusivity, ~q0i ¼
q0

cpi �qi
, cp is the specific heat, q

0 = 0 and q 0 = q 0(t), apply,
respectively, to the situation of a constant wall heat flux and a constant wall temperature. The
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terms ~q0i and f
0
r account for the oscillations of the wall heat flux and capillary pressure due to the

velocity fluctuations. The latter lead to the changing of the fluid temperature and heat transfer
coefficient, as well as the contact angle that controls the radius of the meniscus curvature, which
controls the pressure under the interface.
The solution of Eqs. (9)–(11), subject to the conditions (12)–(14), determines the displacement

of the interface in time, as well as the evolution of the velocity, pressure and temperature
oscillations.
4. Flow with small Pe

4.1. The velocity, pressure and temperature oscillations

The estimations (Appendix B) enable us to disregard the minor convective effects, and to con-
sider the problem in the framework of pure conductive approximation. Neglecting, in Eq. (11), the
term u0i

oT i
ox and �ui

oT 0i
ox we reduce the problem to
oT 0
i

ot
¼ ai

o2T 0
i

ox2
þ ~q0i ð15Þ
where a is the thermal diffusivity.
First we restricted ourselves to considering a particular case of flow in a capillary tube with

qw = const. (q
0 = 0). We also neglected the change of the capillary pressure through the changes

of the contact angle, due to the motion of the meniscus. Accordingly, we assume that f 0r ¼ 0 in
condition (13).
To determine the velocity, pressure and temperature oscillations we use Eqs. (9), (10) and (15).

From Eq. (9) it follows that:
u0 ¼ u0ðtÞ ð16Þ
Thus, the velocity oscillations, in the flow of an incompressible fluid, depend only on time, i.e. the
liquid and vapor columns move in the capillary tube, on the whole, similar to a solid body. Bear-
ing this in mind, we present the solution of Eq. (9) as follows:
u0i ¼ Ai expðXtÞ ð17Þ
where A is the amplitude of the velocity oscillations, X = n + ijwj is the complex frequency, n and
w are the growth rate and frequency of the velocity oscillations.
The specific friction force Fi in laminar flow is expressed as (Yarin et al., 2002)
F i ¼
32

d2
liuix ð18Þ
where d is the diameter of the tube, and l is the viscosity.
In accordance with Eq. (18), the oscillations of Fi are
F 0
i ¼

32

d2
liu

0
ix ð19Þ
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Taking into account Eqs. (17) and (19), we can present the pressure oscillations as follows:
P 0
i ¼ Ai�qifiðxÞ expðXtÞ þ ai ð20Þ
where fi(x) is some function of x, and the parameter ai = ai(t).
From a dimensional consideration, it is necessary to assume that the derivative of the function

f(x) is constant: f 0i ðxÞ ¼ ki. Substitution of expressions (19) and (20) in Eq. (10) gives
ki ¼ � 32

d2
mi þ X

� �
ð21Þ
where m is the kinematic viscosity.
The parameter ai is determined by using the conditions
x ¼ 0; P 0
L ¼ P 0

L:in ð22Þ
x ¼ ‘; P 0
G ¼ P 0

G:0 ð23Þ

As a result we obtain
aG ¼ P 0
G:0 � �qGAGkG‘ expðXtÞ ð24Þ
aL ¼ P 0
L:in ð25Þ
The oscillations of the phase temperatures can be presented in the following form:
T 0
i ¼ Ai

qe
cpi�uL

� �
uiðxÞ expðXtÞ ð26Þ
where qe is the latent heat of the liquid vaporization, �uL ¼ �uL:in is the liquid velocity in the station-
ary flow regime, and u(x) is some function of x that satisfies the condition u00ðxÞ

uðxÞ ¼ const.
Assuming that ui(x) = exp(nix), we obtain
T 0
i ¼ Ai

qe
Cpi�uL

� �
expðnix	 þ XtÞ ð27Þ
where x	 ¼ x� �xf ; n ¼ ikx; kx is the longitudinal component of the wave vector k (kx 5 0,
ky = kz = 0).
The substitution of expression (27) into Eq. (15) gives
ni ¼ 
 X
ai

� �1=2
ð28Þ
Assuming that the temperature oscillations that are due to the displacement of the interface de-
crease far from �xf , the sign in front of Eq. (28) is positive for phase L and negative for phase G.
The oscillations of the meniscus position x0f depend only on the time and are expressed as

follows:
x0f ¼ C expðXtÞ ð29Þ

where C is the amplitude.
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4.2. Dispersion equation

We transform Eqs. (12)–(14), assuming that the difference between outlet and inlet pressure
oscillations is P 0

G:0 � P 0
L:in ¼ �qGAGkG‘ expðXtÞ. As a result we obtain the dispersion equation in

the following form (Appendix C):
y3 þ 3P 	y þ 2q	 ¼ 0 ð30Þ
where y ¼ X1=2 þ b	
3a	
, and
2q	 ¼
2b3	
27a3	

� b	c	
3a2	

þ d	
a	

ð31Þ
3P 	 ¼
3a	c	 � b2	
3a2	

ð32Þ
The solution of Eq. (30) is given in Appendix D. The expressions for the growth rate and fre-
quency of the oscillations have the following form:
n ¼ r	 cosh
u
3
� b	
3a	

� �2
� 3r2	sinh

2 u
3

ð33Þ
j u j¼ 4 r	 cosh
u
3
� b	
3a	

� � ffiffiffi
3

p
r	 sinh

u
3

���� ���� ð34Þ
for the case q2	 þ P 3	 > 0, P* < 0 and
n ¼ r	 sinh
u
3
� b	
3a	

� �2
� 3r2	cosh

2 u
3

ð35Þ
j u j¼ 4 r	 sinh
u
3
� b	
3a	

� � ffiffiffi
3

p
r	 cosh

u
3

���� ���� ð36Þ
for the case P* > 0.

4.3. Analysis of the solution

First we estimate the values of the coefficients a*, b*, c* and d* for realistic physical values of the
characteristic parameters (Table 1).
Taking into account the data in Table 1 it is possible to simplify significantly the expressions for

the coefficients a*, b*, c* and d*
a	 ’ a1=2G a�1
L ð37Þ



Table 1
Phase characteristics (saturated state T = 100 �C) (Vargaftic et al., 1996)

Phase parameter q [kg/m3] l [kg/ms] k [J/smK] cp [J/kgK] m [m2/s] a [m2/s] Pr

Water 958.4 282.5 · 10�6 0.679 4.2 · 103 0.295 · 10�6 16.8 · 10�8 1.75
Vapor 0.598 12.28 · 10�6 2.5 · 10�2 2.135 · 103 20.53 · 10�6 19.58 · 10�6 1.05
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b	 ’ qL:G
�uL
aL

ð38Þ
c	 ’ � � 32
d2

mG þ 2qL:GaL:G
�uL
�xf

� 	
1ffiffiffiffiffi
aL

p ð39Þ
d	 ’
32

d2
mL

�uL
aL

qL:G ð40Þ
For the study of flow stability in a heated capillary tube it is expedient to present the parameters
P* and q* as a function of the Peclet number defined as Pe ¼

�uLd
aL
. We notice that the Peclet number,

in a capillary flow which results from liquid evaporation, is an unknown parameter, which is
determined by solving the stationary problem (Yarin et al., 2002). Employing the Peclet number
as generalized parameter of the problem allows one to estimate the effect of physical properties of
phases, micro-channel geometry, as well as wall heat flux, on the characteristics of the flow, in
particular, its stability.
Using Eqs. (37)–(40) and (31) and (32), we obtain
P 	 ¼ A	Pe2 þ B	Peþ C	 ð41Þ
q	 ¼ A		Pe3 þ B		Pe2 þ C		Pe ð42Þ
where
A	 ¼ � 1
9

q2L:G
aL
d2

aL:G
B	 ¼ � 2
3

qL:Ga1=2L:G
aL
d2
1

~xf
C	 ¼
1

3
32

aL
d2

a1=2G:LPrG
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Fig. 2
1 – cr
A		 ¼
1

27

1

d3
q3L:Ga3=2L:Ga3=2L
B		 ¼ � 1
3
q2L:GaL:Ga3=2L

1

d3~xf
C		 ¼
16

d3
qL:Ga2L:Ga3=2G PrG 1� 1

3
mG:La

1=2
L:G

� �
~xf ¼
�xf
d

The form of the solution of the dispersion equation (30) depends on the sign of the determinant
D ¼ q2	 þ P 3	, i.e. on the values of the characteristic parameters q* and P*. The latter are deter-
mined by the physical properties of the liquid and its vapor, as well as the values of the Peclet
number. This allows us to use q* and P* as some general characteristics of the problem considered
here.
The dependence of P*(Pe) and q*(Pe) is shown in Fig. 2. P*(Pe) is a parabola with an axis

of symmetry line Pe = 0. Since the Peclet number is positive, for any value of the operating
parameters, the physical meaning is that only for the right branch of this parabola, which
intersects the axis of the abscisa at some critical value of the Peclet number: Pe = Pecr. The
vertical line Pe = Pecr subdivides the parametrical plane P* � Pe into two domains, correspond-
ing to positive (Pe < Pecr) or negative (Pe > Pecr) values of the parameter P*. The critical Peclet
number is
I II

P*,q* 

Pe  

q*

P* 

20 1

. The dependences of P*(Pe) and q*(Pe). (Dotted line) Pe = Pecr, I domain, Pe < Pecr; II domain, Pe > Pecr,
itical point, 2 – q* = 0.
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Pecr ¼ 3a1=2G:L � 1
~xf




ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

~xf

� �2
þ 32
3

a1=2G:LPrG

s0@ 1A ð43Þ
Taking into account that Pecr > 0, we should choose the positive value for the radical in Eq. (43).
For very small and large ~xf the following estimates for the critical Peclet number are valid:
Pecr ’ 16 aG:L

qL:G
PrG~xf ; ~xf 6 4
 10�3 and Pecr ¼

ffiffiffiffi
96

p

qG:L
Pr1=2G a3=4G:L; ~xf P 4 (~xf is the dimensionless liquid

height in the stable state). In both cases the errors in the calculation Pecr do not exceed 5%.
The dependence of the critical Peclet number on the dimensionless meniscus position ~xf is plotted
in Fig. 3. An increase of the wall heat flux, which is accompanied by a shift of the interface to-
wards the capillary tube inlet, leads to decreasing Pecr. At small enough qw (large ~xf ) Pecr ap-
proaches its asymptotic value ðPecrÞlim ¼

ffiffiffiffiffi
96

p
a3=4G:LPr

1=2
G .

The curve q*(Pe) is a cubic parabola, which passes through the point O(0,0). Since the Peclet
number is positive, the physical meaning has the falling and rising branches of q*(Pe), which are
located on the right part of the parameter plane q* � Pe.
Bearing in mind the characteristics of the dependences of P*(Pe) and q*(Pe), we estimate the

growth rate of the oscillations in the vicinity of the two characteristic points: Pe = 0 and Pe = Pecr.
(a) Pe = 0. In the vicinity of this point P* is close to C* > 0 and q* is close to zero. Then

sinhu ¼ q	
jPxj3=2

� 0, u � 0, sinh u
3
� 0, cosh u

3
� 1. Since b	

3a	
¼ 0, at Pe = 0, we obtain
n ¼ �3P 	 ¼ �32 aL
d2

a1=2G:LPrG ð44Þ
Thus, at small Pe, the growth rate of the oscillations is negative and the capillary flow is stable.
The absolute value of n sharply increases with a decrease of the capillary tube diameter. It also
depends on the thermal diffusivity of the liquid and the vapor, as well as on the value of the Pran-
dtl number.
(b) Pe = Pecr. In the vicinity of this point, the parameters P* and q* are P* � 0, q*5 0. Bearing

in mind that the sign of the parameter q* is the same as that of the parameter r*, we find that ratio
q	
r3	
� 1 and u � 1 in the vicinity of the point Pe = Pecr. In accordance with that, at large u
sinh
u
3
¼ coshu

3
¼ 1

22=3
ðsinhuÞ1=3 ¼ 1

22=3
q	
r3	

� �1=3
ð45Þ
fx

(Pecr)lim

Pecr 

.50.40.30.20.100

0.2

0.16

0.12

0.08

0.04

0

Fig. 3. The dependence of Pecr (~xf ).
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Substitution of (45) in Eq. (35) leads to the following expression for the growth rate of the
oscillations:
Fig. 4
the cr
n ¼ q
2=3
	

24=3
1� b	

3a	

22=3

q1=3	

 !2
� 3

24 35 ð46Þ
Since q2=3	 > 0, the sign of the growth rate is determined by the difference of the terms in the
bracket of Eq. (46): (i) (1 � N)2 > 3, n > 0, (ii) (1 � N)2 = 3, n = 0, (iii) (1 � N)2 < 3, n < 0, where

N ¼ b	
3a	

22=3

q1=3	
.

The behavior of the growth rate and the frequency of oscillations of flow parameters in the

vicinity of the critical point is illustrated by Fig. 4, where the dependencies n 2
q	

� �2=3
¼ f ð~xfÞ and

1
2

jwj
q2=3	

¼ uð~xfÞ are plotted. It is seen that there are three ranges of changing meniscus position,
which correspond to stable and unstable regimes of the flow. At small enough wall heat fluxes,

when ~xf > ~xð1Þf , the growth rate is negative and the flow in the capillary is stable. An increase of
the wall heat flux is accompanied by a displacement of the meniscus towards the inlet
(~xf � 1=qw), and a decrease of the absolute value of n. In the vicinity of the point ~x

ð1Þ
f , sharp growth

of n is observed. The latter leads to a change of the sign of the growth rate and to the transition
from stable to unstable regime. At large heat fluxes when the meniscus reaches the inlet, the
growth rate sharply decreases and becomes negative. The flow stabilization at ~xf < ~xð2Þf is due
to intense heat transfer to the cooling inlet, when the meniscus position and rate of evaporation
weakly depend on qw (Yarin et al., 2002).
It will be noted that applying the present approximation for the analysis of the stability of cap-

illary flow at high heat fluxes corresponding to domain 0 < ~xf < ~xð2Þf is purely symbolic, since the
general assumption that Pe� 1 is not valid at large qw. Thus, in the case considered here, only
stable stationary (~xf > ~xð1Þf ) or unsteady (~xf < ~xð1Þf ) flow occurs in the capillary tube. The above
is also related to the frequency of oscillations. At physically realistic ~xfð~xf > 1Þ only low-frequency
. The dependences of the increment (solid line) and frequencies (dotted line) of oscillations on ~xf in the vicinity of
itical point.



Fig. 5. The dependence n(Pe): (1) domain of stationary steady regimes of flow; (2) domain of unsteady states Pe = Petr
point of transition stable to unstable flow regime.
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oscillations occur (as estimations show the order of these oscillations does not exceed 10Gz). The
dependence of the growth rate on the Peclet number (moderate qw) is shown in Fig. 5. It is seen
that at small Pe (small enough qw), the flow is stable. An increase of the wall heat flux leads to an
increase of the rate of evaporation, growth of the Peclet number, development of flow instability
and transition (at Pe = Petr) from stable to unstable flow.
5. Effect of capillary pressure and heat flux oscillations

In this section, we analyze the influence of the pressure in the capillary and the heat flux fluc-
tuations on the stability of laminar flow in a heated capillary tube. All the estimations performed
in the framework of the general approach and developed in the previous section are also kept in
the present cases. Below we will assume that the single cause for capillary pressure oscillations is
fluctuations of the contact angle due to motion of the meniscus, whereas heat flux oscillations are
the result of fluid temperature fluctuations only.

5.1. Capillary pressure oscillations

The present analysis is based on the assumption that the interfacial temperature Ts is constant
and the capillary pressure is determined by the following expression:
fr ¼ 2r
r
cos hd ð47Þ
where hd is the dynamic contact angle.
Assuming that the dynamic contact angle hd is a sum of its basic value corresponding to sta-

tionary flow hst and small perturbation h 0 we arrive at the following relation for the fluctuation
of capillary pressure:
f 0r ¼ 2r
r
ðcos hst cos h0 � sin hst sin h0Þ ð48Þ
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For a system in which the contact angle is close to 90� (for example, the water–steel system:
70� < hst < 90�, (Grigoriev and Zorin, 1982)) it is possible to assume that cos hst � 0, sin hst � 1
and sin h0 � h0. Then Eq. (48) takes the following form:
f 0r ¼ � 2r
r

h0 ð49Þ
There are a number of theoretical and experimental relations determining the dependence of the
dynamic contact angle on flow velocity (Dussan, 1979; Ngan and Dussan, 1982; Cox, 1986; Blake,
1993; Kistler, 1993). Hoffman (1975) expressed the dynamic contact angle as a function solely of
dimensionless parameters: capillary number Ca
hd ¼ f ðCaÞ ð50Þ
where Ca ¼ lu
r .

We estimate the effect of the velocity fluctuations on the capillary pressure, using the Hoffman–
Voinov–Tanner law which is valid at hd 6 135 and Ca 6 0 (0.1)
h3d ¼ CT � Ca ð51Þ
where CT ffi 93, hd is in radians.
From Eq. (51), we obtain
h0 ¼ � 1
3

lLu
0
L

r
CT �

lLuL
r

� ��2=3
ð52Þ
Taking into account that uL ¼ �uL þ u0L and u0L � �uL, we arrive at the following relation for cap-
illary pressure oscillations:
f 0r ¼ 2
3

lu0L
r

CT �
lL�uL

r

� ��2=3

ð53Þ
From (17), (20) and (51) we transform Eq. (13) to the following form:
AG~a21 þ ALa	
22 ¼ 0 ð54Þ
where ~a	
22 ¼ �ðkL�qL�xf þ 2�qL�uL þ eÞ; e ¼ 2

3
lL
r ðCT �

lL�uL
r Þ�2=3; ~a21 is the same as ~a21 in Eq. (30).

Then the dispersion equation for the problem considered here takes the following form:
~a21~a32 � ~a	
22~a21 ¼ 0 ð55Þ
The equation can be presented as follows:
a	X
3=2 þ b	X þ ~c	X

1=2 þ ~d	 ¼ 0 ð56Þ
where the coefficients a* and b* are the same as in Eq. (C.5) (Appendix C) and the coefficients ~c	
and ~d	 are
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~c	 ¼ � � 32
d2

mGð1� mL:Ga1=2G:LÞ þ 2qL:G
�uL
�xf

1� qG:La
1=2
L:G � e

qG:1a
1=2
G:L

2�qL�uL

 !( )
1ffiffiffiffiffi
aL

p ð57Þ
~d	 ¼ � � 32
d2

mG
�uL
aL

ð1� mL:GÞ � qL:G
�u2L
aL

e
�qL�uL

1

�xf

� 	
ð58Þ
Approximate expressions for the parameters ~c	 and ~d	 corresponding to realistic values of oper-
ating parameters are
~c	 ’ � � 32
d2

mG þ 2qL:G
�uL
�xf

1� e
qG:La

1=2
G:L

2�qL�uL

 !( )
1ffiffiffiffiffi
aL

p ð59Þ
~d	 ’
32

d2
mL

�uL
aL

qL:G � qL:G
�u2L
aL

e
�qL�uL

1

�xf
ð60Þ
Using Eqs. (31) and (32) as well as expressions (37), (38), (59) and (60) it is possible to transform
the dependencies P*(Pe) and q*(Pe) to the canonical form similar to Eqs. (41) and (42) with coef-
ficients A*, B*, C* and A**, B**, C**.
A	 ¼ � 1
9

q2L:GaL:G; B	 ¼ � 2
3

qL:Ga2L:G
1

~xf
1� e

qG:La
1=2
G:L

�qL�uL

 !
; C	 ¼

32

3

aL
d2

a1=2G:LqL:G

A		 ¼
1

27

1

d3
q3L:Ga3=2L:Ga3=2L ; B		 ¼ 3qG:L

1

d3~xf
aL:Ga3=2L qL:G � 5

2
a1=2G:L

e
�qL�uL

� �
C		 ¼

32

d3
qL:GPrLa

1=2
L:Ga3=2L 1� 1

3
PrG:La

1=2
L:G

� �

In the domain of a very small Peclet number the growth rate of flow oscillations is negative at any
values of flow parameters. In the vicinity of the critical point (Pe = Pecr, P* ’ 0) the sign n is
determined by Eq. (46). An increase in e (at other fixed parameters) leads to an increase if the crit-
ical value of the Peclet number and expansion of the domain of stable flows.
5.2. Heat flux oscillations

There are two causes for oscillations of the heat flux, with Tw = const. (i) fluctuations of the
heat transfer coefficient due to velocity fluctuations and (ii) fluctuations of the fluid temperature.
At small enough Reynolds numbers the heat transfer coefficient is constant (Bejan, 1993), whereas
at moderate Re (Re � 102) it is a weak function of velocity (Peng and Peterson, 1996; Incropera,
1999; Sobhan and Garinella, 2001). Bearing this in mind, it is possible to neglect the influence of
velocity fluctuations on the heat transfer coefficient and assume that heat flux fluctuations are ex-
pressed as follows:
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q0wi ¼ �hiT 0
i ð61Þ
where hi is the heat transfer coefficient for stationary flow of the ith phase.
Using Eq. (15), as well as Eqs. (23) and (61) we obtain
ni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X þ Xoi

ai

s
ð62Þ
where Xoi ¼ 4hi
qicpid

.
Using expressions (21) and (62) we transform Eq. (C.4) (Appendix C). Bearing in mind that

hi ¼ ki Nud and
Xoi
ai
¼ 4 Nu

d2
we arrive at the equation
� 32

d2
mG þ X

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
aL

þ 4Nu
d2

r
� N 1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
aL

þ 4Nu
d2

r
� N 2 �

32

d2
mG þ X

� �
� N 3 þ N 4

¼ þ 32

d2
mL þ X

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
aG

þ 4Nu
d2

s
�M1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X
aG

þ 4Nu
d2

s
�M2 �

32

d2
mL þ X

� �
�M3 þM4 ð63Þ
where
N 1 ¼ �qG�xfaL; N 2 ¼ 2�qL�uLaL; N 3 ¼ ��qG�xf�uL; N 4 ¼ �2�qL�u2L; M1 ¼ �qL�xfaGqG:L;

M2 ¼ 2�qL�uLaGqG:L; M3 ¼ ��qL�xf�uL; M4 ¼ �2�qL�u2L

Eq. (63) shows that the effect of heat flux oscillations is not significant in micro-channels with a
large diameter when the term 4 Nu

d2
is small enough.

Presenting the complex frequency as
X ¼ n þ i j w j ð64Þ

we arrive at two equations that determine the increment and the frequency of oscillations
� f1F 2N 1þ jw j /2N 1 þ F 2N 2 � f1N 3 þ N 4 � f2F 1M1

þ jw j /1M1 � F 1M2 þ f2M3 �M4 ¼ 0 ð65Þ
� jw j F 2N 1 � f/2N 1 þ /2N 2� jw j N 3 þ N 4� jw j F 1M1

� f2/1M1 � /1M2� jw j M3 �M4 ¼ 0 ð66Þ
where
F i ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ b2i

q
þ ai

r
;

/i ¼
1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i þ b2i

q
� ai

r
;
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32

fi ¼

d2
mi þ n;
ai ¼
n
ai
þ 4Nu

d2
;

bi ¼
j w j
ai
Consider the particular case corresponding to low frequency. Assuming b � 0, / � 0 and F i � a1=2i
we arrive at the following equation for growth rate of oscillations at w ! 0:
�fGa1=2L N 1 þ a
1=2
L N 2 � fGN 3 þ N 4 � fLa

1=2
L M1 � a1=2L M2 þ fLM3 �M4 ¼ 0 ð67Þ
Transforming Eq. (67) we obtain
n ¼ � mL
d2Nu1=2ð1þ aG:LÞ

32Nu1=2ðmG:L þ aG:LÞ � Pe
Nu1=2aL:GðqL:G � 2Þ

~xfPrL
þ 32PrLðmG:L � 1Þ

� �� 	
ð68Þ
At small Pe (Pe! 0), the growth rate is negative and the flow is stable whereas at relatively large
Pe the flow is unstable: n > 0. Assuming in Eq. (68) n = 0 and taking into account that qL.G� 1,
mL.G� 1 we find the value of the Peclet number corresponding to transition from stable to unsta-
ble flow
Petr ffi
Nu1=2PrLðmG:L þ aG:LÞ
Nu1=2

~xf
aL:GqL:G þ mG:LPrL

ð69Þ
It is seen that the Peclet number corresponding to transition from stable to unstable flow de-
creases with an increase in the wall heat flux (decreasing ~xf ). The increase of the Nusselt number
leads to an increase in Petr.
6. Moderate Peclet number

The perturbed energy equation for a moderate Peclet number has (at q 0 = 0) the following form
(Appendix E):
oT 0
i

ot
þ �ui

oT 0
i

ox
¼ o

ox
ai
oT 0

i

ox

� �
ð70Þ
Assuming, as earlier, that u 0, P 0 and T 0 are determined by Eqs. (17), (20) and (22) we find ki and ni
ki ¼ � 32

d2
mi þ X

� �
ð71Þ
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� �2s0 1

ni ¼

1

2

�ui
ai

 �ui

ai
þ 4X

ai
@ A ð72Þ
Substitution of expressions (80), (81) in Eq. (C.4) (Appendix C) leads to the dispersion equation
� 32

d2
mG þ X

� �
1

2

�uL
aL

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uL
aL

� �2
þ 4 X

aL

s0@ 1AN 1 þ 1
2

�uL
aL

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uL
aL

� �2
þ 4 X

aL

s0@ 1AN 2
� 32

d2
mG þ X

� �
N 3 þ N 4 ¼

¼ � 32

d2
mL þ X

� �
1

2

�uG
aG

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uG
aG

� �2
þ 4 X

aG

s0@ 1AM1 þ
1

2

�uG
aG

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uG
aG

� �2
þ 4 X

aG

s0@ 1AM2

� 32

d2
mL þ X

� �
M3 þM4 ð73Þ
By transforming this equation, we obtain
A� þ B�X� þ C�F GðX�Þ þ D�F LðX�Þ þ E�X�½F LðX�Þ þ qL:GF GðX�Þ� ¼ 0 ð74Þ

where
A� ¼ ð1� lL:GÞPeþ 2
N 3
N 1

að1� qL:GmL:GÞ

B� ¼ Peð1� qL:GÞ
C� ¼ �mG:LqL:GPe 1þ d2

32mG

N 2
N 1

� �
D� ¼ �Pe 1þ d2

32mG

N 2
N 1

� �
E� ¼ Pe
F GðX�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b1X

�p

F LðX�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2X

�p
b1 ¼ 128
PrG
Pe2

a2G:LqG:L; b2 ¼ 128aG:L
PrG
Pe2
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Assuming X� = n� + ijw�j, where n� ¼ n d2

32mG
, w� ¼ w d2

32mG
we obtain from Eq. (74) two equations for

dimensionless frequency and increment of oscillations
A� þ B�n� þ C
�ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�21 þ b�21

q
þ a�1

r
þ D

�ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�22 þ b�22

q
� a�1

r

þ E
�n�ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�22 þ b�22

q
þ a�2

r
þ qL:G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�21 þ b�21

q
� a�1

r( )

� E
� j w� jffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�22 þ b�22

q
� a�2

r
� qL:G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�21 þ b�21

q
� a�1

r( )
¼ 0 ð75Þ
and
B� j w� j þ C
�ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�21 þ b�21

q
� a�1

r
þ D

�ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�22 þ b�22

q
� a�1

r

þ E
� j w� jffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�22 þ b�22

q
� a�2

r
þ qL:G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�21 þ b�21

q
� a�1

r( )

þ E
� j w� jffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�22 þ b�22

q
þ a�2

r
þ qL:G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�21 þ b�21

q
þ a�1

r( )
¼ 0 ð76Þ
where a�1 ¼ 1þ b1n
�; a�2 ¼ 1þ b2n

�; b�1 ¼ b1 j w� j; b�2 ¼ b2 j w� j.
Using Eq. (75) we estimate the increment of oscillations for low frequencies (jw�j ! 0). Assum-

ing in Eq. (75) b1! 0 we arrive at the equation
A� þ B�n� þ C�a�
1=2

1 þ B�n�ða�1=21 þ qL:Ga
�1=2
1 Þ ¼ 0 ð77Þ
To find the solution of Eq. (77), we use an approximate expressions for the coefficients A�, B•, C•

and E•. The characteristic values of the operating parameters are
A� ffi lL:GPe > 0; B� ffi �qL:GPe < 0; C� ffi �mG:LqL:GPe 1þ qL:GaL:G
Pe
PrG

1

~xf

� �
< 0;

E� ¼ Pe > 0
Consider three particular cases corresponding to very small and large values of n�: (i) n� 6 10�6,
(ii) n� 6 10�5, (iii) n� P 102. In the first case a�

1=2

1 � 1; a�1=22 � 1 and the solution of Eq. (77) is
n� ¼ � A� þ C�

B� þ E�ð1þ qL:GÞ
ð78Þ
Since mG.LqL.G > lL.G and ð1þ qL:GaL:G Pe
PrG

1
~xf
Þ > 1 the sum A� + C• < 0. The sum B• + E•

(1 + qL.G) = E• > 0. Accordingly, the ratio A�þC�

B�þE�ð1þqL:GÞ
is negative and the growth rate is positive
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n� > 0. Thus, in this case the flow in a heated micro-channel is unstable at any value of the Peclet

number.
In the second case, the growth rate is expressed as
n� ¼ 1
2

b�1
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b�2
2 � 8b�1

2 ðA� þ C�Þ
q� 	

ð79Þ
Since b2 > 0 and A� + C• < 0 , the growth rate is positive and the flow is also unstable.
In the third case, Eq. (77) is transformed to a form similar to Eq. (C.5) (Appendix C)
an�3=2 þ bn� þ cn�1=2 þ d ¼ 0 ð80Þ
with the coefficients a, b, c and d expressed as a ¼ E�ðb1=22 þ qL:Gb1=21 Þ, b = B•, c ¼ b1=21 C
�, d = A•.

Estimations show that the determinant
D ¼ q2	 þ P 3	 ð81Þ
that is defined by correlations (31) and (32) and coefficients a, b, c and d are negative. This means
that Eq. (80) has three real roots, which are
n�1=2
I ¼ �2r	 cos

4

3
� b
3a

n�1=2
II ¼ 2r	 cos 60� 4

3

� �
� b
3a

n�1=2
III ¼ �2r	 cos 60þ 4

3

� �
� b
3a

ð82Þ
where cosu ¼ q
r3	
; r	 ¼

ffiffiffiffiffiffiffiffiffiffiffi
j P 	 j

p
, sign r* is the same as sign q*.

At realistic flow conditions cosu � 0 and u is close to p/2. Under these conditions, in any case,
one of the roots of (82) is positive. This shows that the capillary flow in a capillary tube is unstable
at large n�.
The above consideration shows that flow instability in a heated capillary tube develops under

conditions of high wall heat fluxes, which are the main factor determining the flow regimes. The
evolution of the capillary flow is due to changes of heat flux on the wall that may be presented as
follows. At relatively small qw, when the rate of liquid evaporation is small and the height of the
rising liquid is close to the adiabatic one, a stable laminar flow takes place. In this case, the equi-
librium of the two-phase system is determined by the equality of gravity and capillary forces,
whereas the influence of the friction forces and heat losses to cooling inlet is negligible. On the
contrary, at high wall heat fluxes, the dominant role is played by the friction and capillary forces,
as well as loss to inlet. Under these conditions, a small deviation from equilibrium leads to pro-
gressive (exponential) growth of disturbances i.e. development of flow instability. The latter is dis-
played in oscillations of the velocity and temperature of both phases, as well as oscillations of the
position of the meniscus.
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7. Conclusion

We have used the quasi-one-dimensional model describing the dynamics of flow in a heated
capillary tube, with a distinct interface, to study flow instability at small and moderate Peclet
numbers. The effect of heat flux and capillary pressure oscillations on the stability of laminar flow
has been estimated. It has been shown that the stability of the flow, with evaporating meniscus,
depends (other conditions being equal) on the wall heat flux. The latter determines the rate of liq-
uid evaporation, equilibrium acting forces, meniscus position, as well as the heat losses to the
cooling inlet. The stable stationary flow with fixed meniscus position corresponds to low wall heat
fluxes (Pe� 1). In contrast, at high wall heat fluxes (Pe� 1) an exponential increase of small dis-
turbances takes place. This leads to a transition from stable stationary to unstable flow with oscil-
lating meniscus.
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Appendix A. Perturbed equations

In the case when capillary flow undergoes small perturbations, the governing parameters Jj can
be presented as a sum of their basic values, corresponding to the stationary flow Jj, plus small
perturbations J 0j
Jj ¼ J j þ J 0j ðA:1Þ
where Jj = u, P, T, h, q and q.
For flow of incompressible fluid (qi = const., q0

j ¼ 0,
o�uj
ox ¼ 0,

ou0j
ox ¼ 0) the substitution of (A.1) in

Eqs. (1)–(3) leads, in a linear approximation, to the following system of equations:
�qi
oð�ui þ u0iÞ

ox
¼ 0

�qi
ou0i
ot

¼ � oðP i þ P 0
iÞ

ox
� �qig �

oðF i þ F 0
iÞ

ox

�qi
oh0i
ot

þ �qi�ui
o�hi
ox

þ �qiu
0
i

o�hi
ox

þ �qi�ui
oh0i
ox

¼ o

ox
ki
oðT i þ T 0

iÞ
ox

� �
þ �qþ q0

ðA:2Þ
where subscript i = G, L corresponds to vapor and liquid, k, respectively.
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The equations for stationary flow
d�ui
dx

¼ 0

dP i
dx

þ �qig þ
dF i
dx

¼ 0

�qi�uiCpi
dT i
dx

¼ d

dx
ki
dT i
dx

� �
þ �q

ðA:3Þ
we obtain from (A.2) the equations for small perturbations of velocity, pressure, temperature and
enthalpy, as well as the specific volumetric rate of heat absorption. Assuming that hi ¼ cpiT i we
arrive at
ou0i
ox

¼ 0

ou0i
ot

¼ � 1
�qi

oP 0
i

ox
þ oF 0

i

ox

� �
oT 0

i

ot
þ u0i

oT i
ox

þ �ui
oT 0

i

ox
¼ o

ox
ai
oT 0

i

ox

� �
þ ~q0i

ðA:4Þ
where ai ¼ ki
�qicpi

is the thermal diffusivity, ~q0i ¼
q0

�qicpi
. Substitution of (A.1) in conditions (5)–(7) leads

(in linear approximations) to the following system of equations:
�qG �uG þ u0G � dx
0
f

dt

� �
¼ �qL �uL þ u0L �

dx0f
dt

� �
PG þ P 0

G þ �qGð�u2G þ 2�uGu0GÞ ¼ PL þ P 0
L þ �qLð�u2L þ 2�uLu0LÞ þ �f r þ f 0r

�qG �uG�hG þ u0G�hG þ �uGh
0
G � �hG

dx0f
dt

� �
� kG

oTG
ox

� kG
oT 0

G

ox
¼

�qL �uL�hL þ u0L�hL þ �uLh
0
L � �hL

dx0f
dt

� �
� kL

oT L
ox

� kL
oT 0

L

ox

ðA:5Þ
Here xf ¼ �xf þ x0f ; xf is the liquid height in the capillary.
For stationary flow
�qG�uG ¼ �qL�uL

PG þ �qG�u
2
G ¼ PL þ �qL�u

2
L þ fr

�qG�uG�hG � kG
oTG
ox

¼ �qL�uL�hL � kL
oT L
ox

ðA:6Þ
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we obtain from (A.5) equations for the oscillations at the meniscus surface
ð�qG�u0G � �qL�u
0
LÞ ¼ ð�qG � �qLÞ

dx0f
dt

ðP 0
G � P 0

LÞ ¼ 2�qL�uLðu0L � u0GÞ þ f 0r

�qL�uLðh0G � h0LÞ þ ð�qG�hGu0G � �qL�hLu
0
LÞ � ð�qG�hG � �qL�hLÞ

dx0f
dt

¼ kG
oT 0

G

ot
� kL

oT 0
L

ot

ðA:7Þ
where h = cpT, hx¼xf ¼ cpT s, Ts is the temperature of the interface that is assumed to be constant
and equal to the saturation temperature. The small perturbations of pressure practically do not
influence Ts because of weak dependence Ts(Ps) (Reid et al., 1987).
Appendix B. Perturbed energy equation for small Peclet number

The dimensionless form of Eq. (11) is
St
oeT 0

i

o~t
þ ~u0i

oeT i
o~x

þ ~u
oeT 0

i

o~x
¼ Pe	�1 o

2eT 0
i

o~x2
þ #0

i ðB:1Þ
where St ¼ ‘	w	
�u	

and Pe	i ¼ u	‘	
ai

are the Strouhal and Peclet numbers, respectively,
#0
i ¼

q0‘	
qiu	cpiT 	

; ~ui ¼ �ui
�u	
; ~u0i ¼

u0i
�u	
; eT i ¼ T i

T 	
; eT 0

i ¼
T 0i
T 	
; ~x ¼ x

‘	
and~t ¼ tw	; ‘	; �u	; T 	 and w* are charac-

teristic scales of the length, velocity, temperature and time.
The first terms on the left- and right-hand sides of Eq. (B.1) are on the order of St and Pe�1,

respectively, whereas the second and third terms on the left-hand side of Eq. (B.1) have the order
of one. When Pe < < 1 and St� 1 it is possible to omit the terms accounting convective heat
transfer that is due to oscillations and present Eq. (10) as follows:
oT 0
i

ot
¼ ai

o2T 0
i

ox2
þ ~q0i ðB:2Þ
Appendix C. Dispersion equation

Using expressions (17), (20), (26) and (29) for the velocity, pressure, temperature and meniscus
position oscillations, as well as Eqs. (21) and (29) for ki and ni, we arrive at the system of algebra-
ical equations for unknown amplitudes AG, AL and C.
AG~a11 þ AL~a1:2 þ C~a13 ¼ 0
AG~a21 þ AL~a22 ¼ 0
AG~a31 þ AL~a32 þ C~a33 ¼ 0

ðC:1Þ
where
~a11 ¼ �qG; ~a12 ¼ ��qL; ~a13 ¼ �Xð�qG � �qLÞ



1444 G. Hetsroni et al. / International Journal of Multiphase Flow 30 (2004) 1421–1449
~a21 ¼ ðkG�qG�xf þ 2�qL�uLÞ; ~a22 ¼ �ðkL�qL�xf þ 2�qL�uLÞ
� � � �

~a31 ¼ �uL þ qG:L

�hG
qe

� aGqG:LnG ; ~a32 ¼ �uL þ
�hL
qe

� aLnL
� �

~a33 ¼ X�uL qG:L

�hG
qe

�
�hL
qe

; qG:L ¼ qG=qL
Note that the system (C.1) is valid for small deviations of the interface from �xf when nix0f � 1
and expðnix0fÞ ’ 1. Estimations show that the term C~a33 in the thermal balance equation on the
interface is small in comparison with the term AG~a31 and AL~a32. Besides, since qG:L

�hG
qe
� 1 and

�hL
qe
� 1, it is possible to neglect the second term in the expressions for coefficients ~a31 and ~a32

and assume that ~a31 ¼ ð�uL � aGqG:LnGÞ; ~a32 ¼ ð�uL � aLnLÞ. Then the nontrivial solution of Eqs.
(C.1) corresponds to the following condition:
~a11 ~a12 ~a13
~a21 ~a22 0

~a31 ~a32 0

�������
������� ¼ 0 ðC:2Þ
From (C.2), it follows:
~a13ð~a21~a32 � ~a22~a31Þ ¼ 0 ðC:3Þ

The case ~a13 ¼ 0 corresponds to condition X = 0 (stationary regime), we obtain the following dis-
persion equation for X 5 0:
~a21~a32 � ~a22~a31 ¼ 0 ðC:4Þ

The specific form of the dependence of the complex frequency X on parameters of the problem
found by Eq. (C.4) is presented as follows:
a	X
3=2 þ b	X þ c	X1=2 þ d	 ¼ 0 ðC:5Þ
where
a	 ¼ ð1þ a1=2G:LqL:GÞa
�1=2
L ;
b	 ¼ � �uL
aL

ð1� qL:GÞ;
c	 ¼ � � 32
d2

mGð1� mL:Ga1=2G:LÞ þ 2qL:G
�uL
�xf

ð1� qG:La
1=2
L:GÞ

� 	
1ffiffiffiffiffi
aL

p ;
d	 ¼ � 32
d2

mG
�uL
aL

ð1� mL:GqL:GÞ
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and the ratio of characteristic parameters, corresponding to liquid and gaseous phases, is ex-
pressed as aj:i ¼ aj

ai
; qj:i ¼

qj
qi
; mj:i ¼ mj

mi
.

Introducing a new variable
y ¼ X1=2 þ b	
3a	

ðC:6Þ
we reduce Eq. (C.5) to the form
y3 þ 3P 	y þ 2q	 ¼ 0 ðC:7Þ

where
2q	 ¼
2b3	
27a3	

� b	c	
3a2	

þ d	
a	

;

3P 	 ¼
3a	c	 � b2	
3a2	

ðC:8Þ
Appendix D. Solution of the dispersion equation

Eq. (30) has three roots: three real or one real and two complex, depending on the value of
determinant D ¼ q2	 þ P 3	 (Korn and Korn, 1968). Since our aim is to determine the complex fre-
quency X, we will consider the complex solution of Eq. (30) only.
In the case when q2	 þ P 3	 > 0 and P* < 0, the complex roots of Eq. (30) are
X1=2
I ¼ r	 cosh

u
3
þ i

ffiffiffi
3

p
r	 sinh

u
3

� �
� b	
3a	

ðD:1Þ
ffiffiffip� �

X1=2
II ¼ r	 cosh

u
3
� i 3r	 sinh

u
3

� b	
3a	

ðD:2Þ
where coshu ¼ q	
r3	
; r	 ¼ 


ffiffiffiffiffiffiffiffiffiffiffi
j P 	 j

p
, the sign of r* is the same as sign of q*.

In the case when P* > 0 the complex roots of Eq. (30) are
X1=2
I ¼ r	 sinh

u
3
þ i

ffiffiffi
3

p
r	 cosh

u
3

� �
� b	
3a	

ðD:3Þ
X1=2
II ¼ r	 sinh

u
3
� i

ffiffiffi
3

p
r	 cosh

u
3

� �
� b	
3a	

ðD:4Þ
where sinhu ¼ q	
r3	
.

Since X = n + ijwj and
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X1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2þ j wj2
q

þ n

r
þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ j wj2

q
� n

r( )
ðD:5Þ
we split Eqs. (D.1), (D.2) and (D.3), (D.4) into real and imaginary parts. As a result we obtain
expressions for the growth rate and frequency of oscillations
n ¼ r	 cosh
u
3
� b	
3a	

� �2
� 3r2	sinh

2 u
3

ðD:6Þ
� �� �

j u j¼ 4 r	 cosh

u
3
� b	
3a	

ffiffiffi
3

p
r	 sinh

u
3

��� ��� ðD:7Þ
for the case q2	 þ P 3	 > 0; P 	 < 0 and
n ¼ r	 sinh
u
3
� b	
3a	

� �2
� 3r2	cosh

2 u
3

ðD:8Þ
j u j¼ 4 r	 sinh
u
3
� b	
3a	

� � ffiffiffi
3

p
r	 cosh

u
3

���� ���� ðD:9Þ
for the case P* > 0.
Appendix E. Perturbed energy equation for moderate Peclet number

When the temperature Ts of the interface is constant, and wall heat flux is also constant, tem-
perature oscillations are the result of the meniscus displacement along micro-channel axis. They
are expressed as
T 0
i ¼ x0

dT i
dx

¼ x0 dT i
dx

þ x0 dT
0
i

dx
ðE:1Þ
Neglecting the term containing the product of oscillations, we obtain
T 0
i ¼ x0

dT i
dx

;
dT 0

i

dx
¼ x0 d

2T i
dx2

ðE:2Þ
The oscillations of the meniscus position x 0 can be estimated as follows:
x0 ¼ u0	w	 ðE:3Þ

where u0	 is the characteristic oscillation velocity (order of liquid oscillation velocity).
Convective heat transfer that is due to oscillations determines the second and the third terms on

the left-hand side of Eq. (10). From Eqs. (E.2) and (E.3), we estimate the values of these terms.
For this, we consider the ratio of the third term to the second one
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�ui
oT 0i
ox

u0i
oT i
ox

�����
����� ¼ 1

St	

�ui
u0i

o2eT i
o~x2i

� �
oeT i
o~x

� �
��������

�������� ðE:4Þ
where St	 ¼ ‘	w	
u0	
.

The temperature distribution in a heated micro-channel is described by the following correla-
tion (Peles et al., 2001):
eT ¼ CðiÞ

1 þ #ið~x	 þ Pe	
�1

i Þ þ CðiÞ
2 expðPei 	 ~x	Þ ðE:5Þ
where the constants CðiÞ
1 and C

ðiÞ
2 are expressed as
CðLÞ
1 ¼ ð1� CðLÞ

2 Þ � #L=Pe	L

CðLÞ
2 ¼ ½ðeT s � 1Þ � #L~x

	
f �=½expðPe	L~x	f Þ � 1�

CðGÞ
1 ¼ eT s � #Gð~x	f þ Pe	

�1

G Þ � CðGÞ
2 expðPe	L~x	f Þ

CðGÞ
2 ¼ �#G=½PeG expðPe	GÞ�

ðE:6Þ
Here superscripts G and L correspond to vapor and liquid, respectively; characteristic length
‘* = ‘ is the length of the capillary tube, T* = TL.in is the inlet liquid temperature.
The temperature distribution in a heated micro-channel is not uniform (Fig. 6, Peles et al.,

2000). The liquid entering the channel absorbs heat from the walls and its temperature increases.
As the liquid flows toward the evaporating front, it reaches a maximum temperature and then the
temperature begins to decrease up to a saturated temperature. Within the vapor domain, the tem-
perature increases monotonically from saturation temperature Ts up to outlet temperature TG.0.
The module of ratio of the second order derivative o2eT i

o~x2
to the first-order one oeT i

o~x is
o2eT i
o~x	2

� �
oeT i
o~x	

� �
������

������ ¼ CðiÞ
2 Pe

	2
i expðPe	i ~x	Þ

1� CðiÞ
2 Pe

	
i expðPe	i ~x	Þ

ðE:7Þ
T 

0 xf x 

Fig. 6. Temperature oscillation along a heated micro-channel.
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The value of the ratio e ¼ ðo2eT i
o~x	2

Þ=ðoeT i
o~x	 Þ depends on the Peclet number, as well as on the meniscus

position in stable state ~xf . The dependence of the lowest meniscus position ~x	flow on Pe* for
e = 1 is shown in Fig. 7. It is seen that in the range 0.1 < Pe* < 1 and ~x	f > ~x	flow, e P 1. Thus,
the value of the r.h.s of Eq. (E.4) determines the multiplier �ui

u0i

1
St	
. When St* � 1,

�ui
u0i

1
St	

� 1. Since
�ui � u01. In this case it is possible to omit the second term in the l.h.s of Eq. (10) and it takes
the following form:
oT 0
i

ot
þ �ui

oT 0
i

ox
¼ o

ox
ai
oT 0

i

ox

� �
ðE:8Þ
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